skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vaughan, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robinson, Emma Claire (Ed.)
    Modern spatial transcriptomics methods can target thousands of different types of RNA transcripts in a single slice of tissue. Many biological applications demand a high spatial density of transcripts relative to the imaging resolution, leading to partial mixing of transcript rolonies in many voxels; unfortunately, current analysis methods do not perform robustly in this highly-mixed setting. Here we develop a new analysis approach, BARcode DEmixing through Non-negative Spatial Regression (BarDensr): we start with a generative model of the physical process that leads to the observed image data and then apply sparse convex optimization methods to estimate the underlying (demixed) rolony densities. We apply BarDensr to simulated and real data and find that it achieves state of the art signal recovery, particularly in densely-labeled regions or data with low spatial resolution. Finally, BarDensr is fast and parallelizable. We provide open-source code as well as an implementation for the ‘NeuroCAAS’ cloud platform. 
    more » « less